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Background

« Significant recent interest in supersonic overland flight

« Key aerodynamic challenges:
- low boom for supersonic flight over land
- low drag for reduced fuel-burn and emissions

* Accurate CFD analysis and design methods are needed to help address these
challenges

- drag prediction capability fairly well established
- sonic boom prediction less mature, especially with unstructured grids

* Current practice for boom prediction:
- use CFD to compute signature in mid-field (~3-10 body lengths)
- extrapolate signature to ground using propagation code

« Key requirements for accurate CFD mid-field signature
- sufficient grid density to resolve shock
- aligning the field grid with shocks & expansions
- stretching field grid along Mach lines to reduce dissipation
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Some Current CFD Gridding Approaches @
for Sonic Boom Prediction

«  Structured grid:
+ good control of mid-field grid alignment & spacing (A&S)

- multiple blocks needed in near-field for complex
configurations

« Unstructured grid:
+ simpler grid generation for complex configurations
- weak control over mid-field grid A&S, can lead to excessive
dissipation in flow solution

« Hybrid (unstructured near-field, structured mid-field):
+ easy near-field grid generation & good mid-field grid A&S
- requires multiple grids and flow solvers + interpolation

« Unstructured grid with run-time adaptation:
+ easy near-field grid generation & good mid-field grid A&S
- requires multiple runs of analysis and refinement codes
(and adjoint solver), grids can get large if refinement is used
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Methods

« TetrUSS unstructured grid software system used

 Geometry Setup - GRIDTOOL
- develop surface patching from IGES or other geometry definition
- define outer boundary patches

« Grid Sourcing - AUTOSRC
- automatically locates and set sizes for sources that control surface
and field grid spacing

* Grid Generation - VGRID
- generates body-fitted tetrahedral mesh using advancing layers and
advancing front methods

- new volume source capability used to control field grid spacing
below configuration (see AIAA-2008-7178)

*  Grid Modification - SSGRID
- shears and stretches grid for improved sonic boom prediction

 Flow Solver - USM3D
- cell-centered RANS flow solver, Roe flux-difference scheme
- all cases run in inviscid mode
- limiters available for solution stability

Www.nasa.gov ¢



National Aeronautics and Space Administration

Geometry Setup - GRIDTOOL @

- Develop water-tight surface patches from IGES
definition of geometry, including sting

» Add compact outer boundary box

3*BL
BL
BL

2*BL
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Grid Sourcing - AUTOSRC

All line sources controlling surface grid
automatically located and sized

Volume source for
dense field grid
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Grid Modification - SSGRID

Grid alignment approximated by a priori axial shearing of grid
based on free-stream Mach number and configuration angle of
attack

Grid stretching reduces grid size and signature dissipation to
reach mid-field

Inner cylinder region with no grid modifications prevents
sheared & stretched grid from intersecting configuration

Variable inner cylinder radius based on keel line allows grid
modification to begin close to body

Grids for different Mach number/angle-of-attack combinations
can be quickly (~ 1 minute) developed from baseline grid

-]

- Radial stretching based on distance
between inner cylinder and outer
boundary

« Stretching increased as r%-25 for
smooth cell size transition away
from inner cylinder

Keel line Kﬂ

sin-' (1/M)

Axial shearing based on Mach angle

Inner cylinder —|

Outer boundary —,
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Grid Modification - SSGRID

Baseline
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Configurations for Validation @

B ——
6.48° Cone-Cylinder (NASA TM X-2219)

69° Swept Delta-Wing-Body

. (NASA TN D-7160)

- —————————
Ames Low Boom Wing Tail with Nacelles

Quartic Body of Revolution (NASA CP-1999-209699, LBWT)
(NASA TN D-3106, Model 5)

Parabolic Body of Revolution
(NASA TN D-3106, Model 4)
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Results of Flow Solver Limiter Study

6.48° Cone-cylinder, fine grid
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Delta wing-fuselage, coarse grid
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SSGRID Results For 6.48° Cone-cylinder @

Case # Cells(M) Timing (minutes)
Grid Run Total
Coarse 2.0 6 8 14 M =1.68 =0.0° h/L=10
Medium 3.6 10 14 24 % ) o )
Fine 9.7 23 40 63
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SSGRID Results For Parabolic Body (Model 4)

Case # Cells(M) Timing (minutes)
Grid Run | Total
Coarse 1.9 5 10 15
Medium 3.5 9 19 28
Fine 9.8 24 54 78
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SSGRID Results For Quartic Body (Model 5) @

Case # Cells(M) Timing (minutes)
Grid Run Total
Coarse 1.8 5 10 15
Medium 3.4 9 18 27
Fine 9.5 24 53 77
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SSGRID Results For 69° Swept Delta-wing-body @

Case # Cells(M) Timing (minutes)
Grid Run | Total
Coarse 2.7 9 18 27
Medium 4.3 13 32 45
Fine 10.5 29 98 127
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SSGRID Results For LBWT @

Case # Cells(M) Timing (minutes)
Grid | Run | Total

Coarse 4.2 15 32 47 _ - o -
Medium 7 1 o4 | 54 78 M =20 o=2.0° h/L=1.167
Fine 15.9 50 127 177
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Final Comparison of CFD and Wind Tunnel Results
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Concluding Remarks

* Mid-field boom signatures obtained using the fine grid
option in AUTOSRC correlate well with wind tunnel data

» Grid size studies indicate that coarser grids can give up
to 5x reduction in case time with little loss of accuracy

 SSGRID can quickly (~1 minute) modify a baseline grid
for analysis at other Mach numbers or angles of attack

 SSGRID provides an efficient method for developing
unstructured grids for accurate prediction of sonic boom
signature at mid-field distances
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